

Autonomous Learning Vehicle Integrating Neural Networks

Project Description

Developed a system for detecting airborne aircraft in collaboration with Rockwell Collins using

- Computer Vision
- Machine Learning
- Neural Networks

Five different pre-made neural networks were tested evaluated on their performance. Google and MobileNets was tested using three different image sizes: 150x150 PX, 300x300 PX, and 450x450 PX.

Each network was tested on a set of 30 images

Requirements

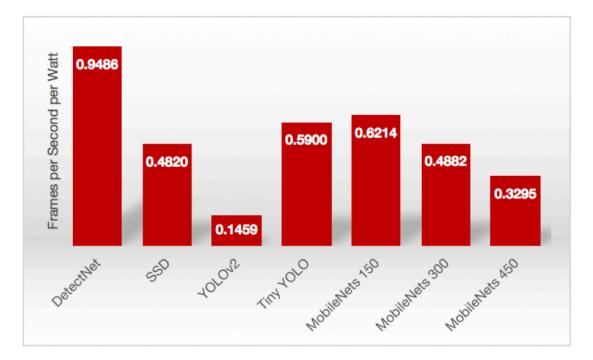
Functional Requirements

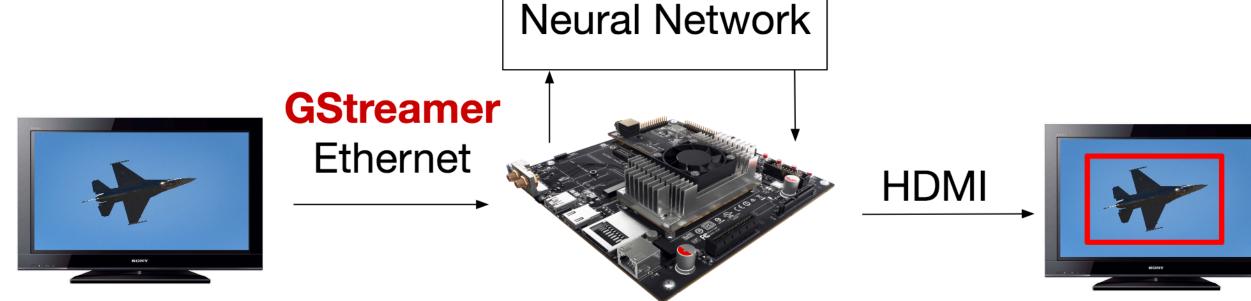
- Process a single image or a continuous video stream
- Detect multiple objects in one image frame
- Report confidence levels of identified objects

Non-Functional Requirements

- Performance Accuracy
- Scalability
- Reliability
- Extensibility Throughput

containing plane and non-plane objects:


Performance Statistics (%)


Model	Sensitivity	Precision	Negative Predictor Value	Accuracy	Miss Rate	Fallout
DetectNet	76.92	88.24	52.63	75.47	23.08	28.57
SSD	56.41	100.00	45.16	67.92	43.59	0.00
YOLOv2	71.79	100.00	56.00	79.25	28.21	0.00
Tiny YOLO	46.15	100.00	40.00	60.38	53.85	0.00
MobileNets 150	25.64	100.00	32.56	45.28	74.36	0.00
MobileNets 300	66.67	100.00	51.85	75.47	33.33	0.00
MobileNets 450	71.79	100.00	56.00	79.25	28.21	0.00

The performance of each network under a continuous video stream was recorded:

Performance Metrics						
Model	FPS	Memory Usage (GB)	Power (mW)			
DetectNet	9.60	2.34	10120			
SSD	5.57	2.57	11555			
YOLOv2	1.75	3.23	11994			
Tiny YOLO	6.20	2.21	10508			
MobileNets 150	4.15	2.73	6678			
MobileNets 300	3.56	2.84	7292			
MobileNets 450	3.02	3.04	9166			
Idle CPU	n/a	1.16	3343			

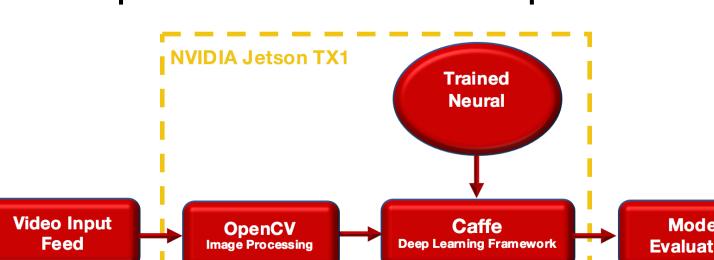
Image Throughput per Watt

FlightGear Flight Simulator NVIDIA Jetson TX1 Host Computer

Processed Image **Display Monitor**

nage Predictio

Output


Flight Gear Flight Simulator

- Multi-platform open source flight simulator
- Used for video streaming and individual images

GStreamer

- Open source multimedia streaming application framework
- Streams the host computer's desktop to the embedded board NVIDIA Jetson TX1

NVIDIA Jetson TX1

Learning

Algorithm

OpenCV Image Processing

Results & Conclusion

Different different models have strengths and weaknesses, making them more applicable for certain operating environments:

- YOLOv2 and Google MobileNets 450 had greater accuracy towards detecting aircraft and the latter consumed less power; however, neither network performed well for real-time video processing
- the highest DetectNet probability of had detection, the lowest miss rate, and the best FPS performance, but it also had the greatest fallout
- MobileNets 300 represents a good Google regarding the power choice consumption, performance, and stability tradeoffs

- GPU capabilities
- Linux operating environment
- Supports OpenCV
 - Open source computer vision library Ο
 - Captures and resizes a frame from the feed Ο
 - Displays the output Ο
- Supports Caffe
 - Open source deep learning framework
 - Trains and executes neural networks Ο

More data, tolerance modifications, and network retraining could yield improved performance

Advisors: Drs. Jones and Zambreno Client: Josh Bertram, Rockwell Collins

Bijan Choobineh (CprE) Darren Davis (CprE) Tracy La Van (CprE) Jesse Luedtke (CprE) David Schott (SE) Robert Stemig (CprE)

For more information, visit our website: www.dec1709.sd.ece.iastate.edu

