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1 Introduction 
This project was in collaboration with Rockwell Collins to use computer vision, machine learning, and neural 
networks to have a drone detect objects in the air. Objects detected could include airplanes, helicopters, 
other drones, flying birds or mammals, and stationary items such as buildings. This required the team to 
acquire theoretical knowledge in the computer vision and machine learning fields to be able to identify and 
implement the software and hardware requirements capable of performing these tasks. Furthermore, part 
of the project consisted of determining which machine learning algorithms are particularly suitable for the 
object recognition task. 

 
Computer vision tools were used to preprocess images from a picture and video stream, as well as 
extracting key features of objects. Machine learning was then incorporated to perform teaching operations 
for identifying objects or distinguishing between different objects based on those key features. Since this 
problem is interdisciplinary in nature, the team had to investigate to what extent computer vision 
techniques could support the machine learning based detection algorithms. 

 
The next few sections will describe the purpose of this project, the intended users, and the operating 
environment, as well as the desired final outcomes or goals of the project.  
 

1.2 Purpose 
Rockwell Collins is an aerospace electronics company for military and commercial aircraft. This technology 
could be used in a military setting; object detection could be used to survey an area before sending in 
troops by detecting enemy forces or identifying bombing locations of strategic targets. Commercial use 
could include finding hotspots in forest fires, locating remote wreckage sites, finding lost hikers, or finding 
survivors of a natural or manmade disaster. The diversity of these different use-cases shows the 
extensibility, power, and usefulness of the project.  
 

1.3 Goals 
Rockwell Collins’ primary goal for this project was to detect objects in the air. To accomplish this goal, the 
project was broken into smaller, more manageable parts. First, the team invested time in expanding their 
knowledge base on computer vision, machine learning, and neural networks. Upon acquisition of this 
knowledge, the next part the team decided on which software to use and how to use it for object detection. 
To accomplish this goal, detection began with detecting a simple object (the letter ‘X’) on a plain 
background. The difficulty of detecting an object then was increased by adding in background noise, similar 
objects, and permutations of the same object. These techniques used for detecting a simple object were 
applied towards detecting more complicated, airborne objects – specifically airborne aircrafts. The system 
was taught how to detect these objects in the same manner. With these parts in place, the final phase 
implemented the parts together into a customized object detection pipeline.  
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2 Deliverables 
This section describes the necessary deliverables and project timeline for the project. 
 

2.1 Overview 
To meet the goals outlined in the proposal, the following deliverables were necessary: 

Phase I:  Education and determining what software/hardware to use 

• Learn about computer vision, neural networks, and machine learning 

• Determine what hardware to use 

• Determine what software to use based on its capabilities and ability to integrate with the 
selected hardware 

Phase II:  Detecting a simple object 

• Image processing - show an image, gray scale, threshold, ORB feature detection, 
homography, and object matching (detecting an ‘X’) 

• Detect an ‘X’ with background noise in an image 

• Detect multiple ‘X’s in an image (with and without background noise) 
Phase III:  Extending Phase I by detecting objects other than ‘X’s 

• Detect airborne objects using elementary machine learning techniques 

• Incorporate cascade classifier training using OpenCV and its Caffe framework. 
Phase IV: Detect and classify basic images such as ‘X’s or handwritten digits with a simple neural 

network 

• Training a network with images of ‘X’s and handwritten digits 

• Discover the limitations of simple neural networks 

• After detecting an object, report possible object identifications with associated confidence 
levels 

Phase V:  Detect and classify complex images with more advanced and deeper neural network models 

• Possibly use Convolutional Neural Networks 

• Use complex images that contain many objects in different locations and orientations 

• Detect multiple objects and multiple complex objects within an image 

• Identify objects even if objects have several different appearances (e.g. detecting a bird 
with wings by its sides and with its wings expanded) 

Phase VI:  After successfully being able to identify objects, begin feeding the system back-to-back 
images, building up to real-time image capture and video feed 

Possible Bonus Features to implement 

• Tracking movements of identified objects 

• Feature Recognition:  Ability to recognize various features present on objects (i.e. colors, 
symbols, unique traits, etc.) 

• Use multiple cameras 
o 360 o View:  Like Nissan’s 360 o view technology around their vehicles, have a 360o 

view of what is around the system laterally and what is above and/or below the 
system 

o Explore whether thermal imaging or night vision could be incorporated to the 
proposed model 

• Track fellow systems in air and follow the system via autopilot 
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2.2 Timeline 
The timeline below in Figure 1 shows the goal of the project, directly related to the phase descriptions 
above. The first semester was heavily focused on education, determining the hardware to use and selecting 
which software interfaces work well with the hardware to accomplish the goals set forth for the project. 
The second semester was heavily focused on producing the deliverables outlined within each phase of the 
project.  
 

 
Figure 1: Project Timeline 

2.2.1 First Semester 
The project breakdown for the first semester of senior design can be seen below in Table 1. Most this 
semester was spent on education on the topic, on the chosen hardware, and on software that will integrate 
with the hardware. Various phases may be lightly touched on through education, but no serious 
programming was accomplished until the second semester. 
 

Week Beginning/Ending Task(s) Assignment Deliverables 

February 13 19 Education All Members  
 20 26    

March 27 5    

 6 12 Begin Setup & Coding All Members Design Document v1 
 13 19 Begin Phase I All Members [Spring Break] 

 20 26    

 27 2   Project Plan v2 

April 3 9    

 10 16    

 17 23   Design Document v2 & 
Project Plan v3 

 24 30   491 Demo 

May 1 7 Begin Phase II All Members  
Table 1: First Semester Project Breakdown 

 

2.2.2 Second Semester 
The project breakdown for the second semester of senior design can be seen below in Table 2. This 
semester was focused on using the education from first semester and applying it towards programming 
the software and hardware to produce the desired deliverables. Assignments for phases were broken up 
and sometimes assigned to specific team members once the education phase from the first semester was 
completed. Waiting to assign tasks allowed the team to judge the strengths of each member more 
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accurately. This also allowed the team to work on multiple phases at once and extend the amount of time 
needed on a phase, if necessary.  
 

Week Beginning/Ending Task(s) Assignment Deliverables 
August 21 27 Continue Phase II All Members Phase I 

September 28 3 Begin Phase III All Members  

 4 10   Phase II 

 11 17   Phase III 
 18 24 Begin Phase IV All Members  

 25 1    

October 2 8 Begin training with 
FlightGear & gathering 
images for detection 

Bijan, Robert Phase IV 

 9 15 Begin Phase V All Members  

 16 22    

 23 29   Phase V 

November 30 5 Begin Phase VI All Members  

 6 12 Begin Preparing for Demo & 
Testing 

All Members  

 13 19 Begin Final Documentation;  
Begin Poster 

Darren, Tracy, Jesse;  
David, Bijan, Robert 

Phase VI 

 20 26  Darren, David [Thanksgiving Break] 
Final Testing, FlightGear 

December 27 3 Final Demo/Presentation 
Preparation 

All Members Final Report, Poster 

 4 10   492 Demo & 
Presentation 

Table 2: Second Semester Project Breakdown 
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3 Literature Review 
Below are several resources and research studies previously done on the topic of image detection using 
machine learning and computer vision. Besides those listed below, machine learning work has been done 
before on image detection and movement. For instance, Google has Google Draw Neural Network. 

 
Deep learning has been a very popular area of research so there have been many reputable papers 
published over the years. Additionally, a specific type of neural network called a Convolutional Neural 
Network (CNN) has become popular recently and many more papers on the subject have been published. 
Although some sources the team considered were at a higher level of abstraction in terms of their 
discussion, the references are incredibly advantageous and provided the team with a theoretical 
understanding of neural networks and machine learning. 
 

3.1 Previous Literature 
One important aspect in the A.L.V.I.N.N. project was trying to understand the interplay between machine 
learning and computer vision. Asaeedi et al1. describes topological and geometric algorithms that could be 
of use for detecting (ideally) highly distinguishable points in feature detection tasks. The paper discusses a 
generalization of convex hull called α-convex hull that also incorporates the smoothness of the computed 
convex hull spanning all desired points. From object decomposition to shape approximation, or even 
pathfinding:  alpha shapes have an enormous range of potential applications.  The application of α-convex 
hull which is particularly relevant to the A.L.V.I.N.N. project is point pattern matching. This is because point 
pattern matching could be used to more accurately discriminate between objects detected by faster/naive 
approaches. The algorithm described in the paper should perform admirably in object detection tasks 
across images that contain a lot of noise; however, this also comes at the price of heightened computational 
cost. The anticipated benefits and costs of integrating such a computationally complex algorithm into the 
object detection pipeline must be carefully weighed. 
 
The paper by Yann Lecun et al.2 is one of the first demonstrating the concepts of a CNN. It describes the 
fundamental differences from a traditional feedforward neural network that make a CNN more applicable 
for image classification. For example, people are able locate and identify specific objects in images because 
human visual cortexes notice the spatial orientation of colors and shapes. CNNs achieve this by subsampling 
small blocks within an image. This preserves the spatial structure of objects in images and allows a CNN to 
locate an object regardless of its location, rotation, and scale. Understanding the way neural networks 
function is essential for the A.L.V.I.N.N. project and this paper gave the team a good insight into CNNs. 
 
The CNN referenced in Yann Lecun et al. is named LeNet and it performs five steps when analyzing an 
image. The steps are convolution, max pooling, convolution, max pooling, and finally the resulting data is 
passed to a traditional feed forward neural network. The convolution layer applies six different trained 
filters to the input image. The filters extract six feature maps from the image which are then compressed 
during the max pooling layer. These steps are repeated once until the processed data is passed into a fully 
connected feed forward neural network.  
 

                                                 
1 Asaeedi, Saeed, et al. “α -Concave hull, a generalization of convex hull.” Theoretical Computer Science, 

vol. 1309.7829, 30 Sept. 2013, doi:10.1016/j.tcs.2017.08.014. 
2 LeCun, Yann, et al. “Gradient-Based learning applied to document recognition.” Proceedings of the IEEE, 

vol. 86, no. 11, Nov. 1998, pp. 2278–2324., doi: 10.1109/5.726791. 
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In the paper “Video Super-Resolution with Convolutional Neural Networks” by Kappeler et al.3, the issue of 
video super resolution among CNNs is addressed. In this paper, the team introduced a video SR algorithm 
using CNNs. The proposed CNN exploits spatial as well as temporal information. Having investigated 
different architectures each had shown their advantages and disadvantages. Using motion compensated 
input frames, filter symmetry enforcement and a pre-training method they could improve the 
reconstruction quality and reduce the training time. Finally, an adaptive motion compensation scheme to 
deal with motion blur and fast moving objects was introduced.  The results presented an algorithm that 
outperforms the current state-of-the art algorithms in video SR. The potential of use of this in real-life 
application could help with the issue of motion-blur from the camera or the objects in motion. 

 
The same authors, Kappeler et al., published a similar piece later in 2016 titled “Super-Resolution of 
Compressed Videos using Convolutional Neural Networks.” 4 The paper tackles the issue regarding being 
able to generate high and ultra-quality video efficiently. The paper discusses how this topic has been 
analyzed for a long time in which low quality video is used, and higher quality video is an estimated output 
of the low-quality video. What the paper introduces, is a neural network approach to the problem, using 
neural networks to be able to take in a low-quality video stream and generate a high quality or ultra-quality 
video stream respectively. To do this, their proposed algorithm first trains a network using three layers of 
convolution on a training set. To compensate for motion blur in video, they used the Druleas Algorithm 
accordingly which uses the (CLG-TV) approach to be able to effectively handle even large displacements. 
The paper concludes by discussing their implementation and verifying the conversion from low to high 
quality data. The paper discusses that to the best of their ability there is no other existing algorithm that 
using CNNs to approach the SR algorithm problem. This paper has a significance to the project, since both 
working with the Caffe framework and with input data coming into the aircraft detection network. The 
ability to get a clearer higher quality picture would make the detection rate go up accordingly and thus 
make aircraft detection more efficient and accurate. 

 
There are several different premade neural networks available on the Internet today. One such neural 
network is ImageNet. ImageNet was designed to improve the performance and accuracy of CNNs. The 
paper by Krizhevsky et al5. goes into detail on the differences made to the structure of the network and the 
training process. CNNs before ImageNet were typically trained on datasets with tens of thousands of 
images. To be able to identify thousands of different objects, millions of data points are needed. The 
problem with using millions of data points, is that the network needs to have a much larger learning 
capacity compared to previous designs. The creators of ImageNet achieved this by simply adding more 
layers to the different stages inside a CNN. 
 

                                                 
3 Kappeler, Armin, et al. “Video Super-Resolution with Convolutional Neural Networks.” IEEE Transactions 

on Computational Imaging, vol. 2, no. 2, 30 Mar. 2016, pp. 109–122., doi:10.1109/TCI.2016.2532323. 
4 Kappeler, Armin, et al. “Super-Resolution of compressed videos using convolutional neural networks.” 

2016 IEEE International Conference on Image Processing (ICIP), 19 Aug. 2016, pp. 1150–1154., 
doi:10.1109/icip.2016.7532538. 

5 Krizhevsky, Alex, et al. “ImageNet classification with deep convolutional neural networks.” 
Communications of the ACM, vol. 60, no. 6, 2017, pp. 84–90., doi:10.1145/3065386. 
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The paper by Simonyan et al.6 covers a deep neural network, known as VGG, that was designed so that it 
was less complicated and deeper than previous neural network models. This model also changed some of 
the hyper parameters specific to CNNs such as the kernel size and stride. VGG altered these parameters so 
that more information was processed for each image. In the A.LV.I.N.N. project, DetectNet uses ImageNet 
which is trained in similar fashion to VGG as mentioned in this paper. ImageNet, as mentioned in previous 
reviewed papers, is trained on 1.2 million images covering a thousand different classes. This creates a 
drawback in that it requires a slower, lengthy training process. To avoid this problem, the team gained 
access to Iowa State University’s high-performance computing (HPC) cluster to use its computing power 
for training. 
 
Dehmamy et al.7 discussed how they trained a deep neural network with a rectified linear unit (ReLU). The 
paper went into detail about low-lying layers of a neural network could be replaced with activated layers 
that have been condensed using eigenvectors and matrices. The paper detailed how one could solve the 
first layer of the neural network and then solve subsequent layers. They also proposed a way that this 
training could be done recursively. The goal was to reduce the computational complexity of training neural 
networks. This paper was more of an informational piece for the A.L.V.I.N.N. project due to its use of a deep 
neural network. It was interesting to see the layers of the filters created on the MNIST dataset of 
handwritten digits because the team originally experimented with MNIST while learning about neural 
networks. 

 
The above papers and articles provided the team with a foundation to building the A.L.V.I.N.N. project from 
the ground up. Though the projects were not all similar in nature, the insights proved to be valuable when 
learning about various neural networks and how machine learning and computer vision relate to one 
another. Two articles were found that specifically used machine learning with drones and the NVIDIA Jetson 
TX1 board which were instrumental in helping the team decide which neural networks to consider for the 
project. These two articles are discussed in more detail in the next section.  
 

3.2 Related Work 
In recent years, the use of drones has exploded from a personal toy to an industrial tool. Drones are being 
used and considered in various industries, such as Amazon contemplating package delivery via drone, mines 
managing equipment and aggregate wit drones, and police are using drones for search and rescue 
operations. Drone utilization has become possible due to embedded systems, neural networks, and 
computer vision working together to quickly process and identify objects within an image.  
 
While researching previous work, the team found two similar projects both focusing on drones and 
autonomous flight. Although these projects incorporated tracking, tracking is not a focus in the A.L.V.I.N.N 
project; however, it has been included it as a feature that could be added in the future. The paper from 

                                                 
6 Simonyan, K., Zisserman, A. 2015, ‘Very Deep Convolutional Networks for Large-Scale Image 

Recognition’ Paper presented to International Conference on Learning Representations, San Diego, 
CA, May 7-9, 2015. viewed 10-22-17, https://arxiv.org/pdf/1409.1556v6.pdf. 

7 Dehmamy, Nima, et al. “Convergence of Deep Neural Networks to a Hierarchical Covariance Matrix 
Decomposition.” Computing Research Repository, vol. 1703.04757, 14 Mar. 2017, 
arxiv.org/abs/1703.04757. 
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Han et al8. does an additional comparison on NVIDIA boards which has proved useful as the client suggested 
the use of an NVIDIA Jetson TK1 or TX1 board for this project. 

 
When considering these boards, there was an immediate distinction in size, with the TK1 being considerably 
smaller and more likely to fit on any drone. As discussed in Han et al., the TX1 has similar power 
requirements to that of the TK1, but the TX1 is three times faster at object detection.  The authors’ 
comparison for tracking the TK1 and TX1 both processed at 71 fps. This means the KCF algorithm the 
authors were using is light enough that it did not require the additional computing power of the TX1. They 
also presented a way to make the TX1 smaller than the TK1 by using a carrier board. The team’s choice to 
use the TX1 board over the TK1 was confirmed after reading the Han et al. findings. 
 
The other interesting part of Han et al. is their research and decision process for choosing a neural network. 
This has been a main topic of debate in the A.L.V.I.N.N. project as well. On one hand, speed is a major 
concern when dealing with detecting objects in real-time but, on the other hand, accurate classification 
could be just as important depending on the use of the system. They looked at “off-the-shelf” networks 
such as Fast R-CNN, Faster R-CNN, and YOLO Detector. In the end, they went with their own small and 
relatively shallow network. Based on these findings, efforts were made to split the A.L.V.I.N.N. project into 
two teams:  some members focused on developing a network while the remaining members are 
experimented with “off-the-shelf” models. These “off-the-shelf” models include DetectNet, based on the 
Google LeNet network structure for accuracy, Single Shot MultiBox Detector (SSD), YOLO version 2, Tiny 
YOLO, and Google MobileNets. 

 
DetectNet is an NVIDIA network that comes preinstalled on the TX1 board. The decision was made to try 
this network instead of switching to one of the R-CNNs mentioned in both papers. Smolyanskiy et al.9 stated 
R-CNNs are not ideal for running in real-time on the TX1 and Han et al. confirms this by stating they only 
switch to it when accuracy is too low with the KCF tracking model. These confirmations, along with having 
DetectNet already on the board, let the team to believe this would be a promising approach to begin 
working with a neural network. 

 
Both Han et al. and Smolyanskiy et al. discuss the YOLO network and Smolyanskiy et al. also talks about the 
SSD network. Smolyanskiy et al. brought up support issues with the SSD network and thus used a modified 
version of YOLO. Han et al. decided against using the unmodified YOLO network because it did not provide 
the accuracy they wanted; however, since their publication, there is a new version of YOLO that promises 
to have improved accuracy while being even faster. There is a newer version of TensorRT (NVIDIA’s deep 
learning inference optimizer) that supports the SSD and YOLO networks. 

 
One idea brought up in Han et al. that the team had not considered was switching between networks for 
different tasks. Han et al. used a very fast model for tracking and switched to a more accurate R-CNN when 
accuracy was reduced past their desired threshold. If one network cannot provide both speed and accuracy, 
a potential solution is to use one network geared towards fast results and another geared towards object 

                                                 
8 Han, S. Shen, W. Liu, Z. Deep Drone: (2016) Object Detection and Tracking for Smart Drones on 

Embedded System. Stanford University. Retrieved from 
https://web.stanford.edu/class/cs231a/prev_projects_2016/deep-drone-object__2_.pdf. 

9 Smolyanskiy, N. Kamenev, A. Smith, J. Birchfield, D. (2017) Toward Low-Flying Autonomous MAV Trail 
Navigation using Deep Neural Networks for Environmental Awareness Retrieved from 
https://arxiv.org/pdf/1705.02550.pdf. 
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prediction accuracy. Speed would be important if, when flying along a designated route, the drone needs 
only to detect objects to avoid a collision. Whereas, accuracy would be important in purposefully trying to 
classify the objects the drone comes across in its path. 

 
These two papers provided useful research findings. The papers confirmed the team’s choice in using the 
NVIDIA Jetson TX1 board for the project. The papers provided insight into different neural networks that 
have been used for accuracy and speed and have confirmed that some of the networks being considered 
for this project have been successfully used in other projects with similar goals. Though the idea ended up 
not being implemented, the idea for the use of more than one network for different flight scenarios 
expanded the realm of possibilities that the A.L.V.I.N.N. project could tackle to achieve its goals. 

4 Design  
This section covers the various requirements for the project, including non-functional, functional, and 
resource requirements. In addition, it covers safety considerations for the implementation of Project 
A.L.V.I.N.N. and the associated professional ethics and standards. 
 

4.1 Project Requirements and Specifications  
The specific objective of the project was to detect and identify airborne aircraft through means of computer 
vision and neural networks. The project incorporated open-source deep learning frameworks and open 
source computer vision library to deploy a neural network on an embedded board. Alongside the specific 
objective, the team was required to meet specific functional and non-functional requirements. The non-
functional requirements set criteria for the performance of the system while the functional requirements 
define the behavior of the system. 
 
The team determined the resources needed to accomplish the goal of the project. Since the work was done 
in a lab environment, the resource requirements are specific to the lab. Incorporating the project into a 
different environment, such as a drone, will change the resources required. The following sections will 
breakdown the non-functional, functional, and resource requirements for the project. 
 

4.1.1 Non-Functional Requirements 
The following list includes the non-functional requirements for the project: 

• Time performance:  The object detection processing pipeline for a single image should take no 
longer than 300 ms and continuous video feed should process no less than three frames per 
second. 

• Extensibility:  The data should be outputted in an elastic way such that future users could easily 
integrate and use the data in other systems (i.e. using JSON-format). 

• Object detection accuracy:  The image processor should be able to identify a desired object 50% of 
the time on images where the object in question is clearly discernible by a human eye.  

• Reliability:  The image processor should be able to run sustainably for 30 minutes without crashes 
or other execution interruptions (i.e. due to overheating, memory leaks, or other software bugs). 

 

4.1.2 Functional Requirements 
The following list includes the functional requirements for the project. The image processor must be able 
to 

• process a single picture, string of pictures, and/or continuously moving video. 
• detect stationary objects apart from the background. 
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• detect moving objects apart from the background. 
• detect multiple objects of the same or different type in a single image.  
• report confidence levels of any identified objects. 

 

4.1.3 Resource Requirements 
The following list includes the resource requirements for this project: 

• NVIDIA Jetson TX1 board - $344 (possible educational discount available) 
o or NVIDIA Jetson TK1 board - $192 

• Logitech c270 webcam - $22 

• USB hub - $10 

• 16GB flash drive - $10 

• 8GB SD card - $10 

• Other requirements: 
o Standard computer equipment:  Tower/monitor, mouse, keyboard, cables 
o Monitor with HDMI capabilities 
o Access to Iowa State University’s High Performance Computing Lab 

 

4.2 Safety Considerations 
As with any new technology that is investigated, it is important to consider safety issues that may arise with 
the technology. An immediate concern is using the project to detect specific objects as an incorrect 
detection could lead a user to make an inappropriate decision, e.g. an incorrect detection of in a military 
setting could lead to disastrous consequences. Similarly, failing to make a detection could lead a drone 
using the technology to crash into an airborne object. 

 
To run a neural network takes up a good amount of computing power. This project is meant to be used on 
an embedded board that lies inside a drone. Due to the space constraints of a drone and the computing 
power necessary to use the board to detect objects, overheating is a concern. Overheating or overuse of 
the boards memory could lead to technical malfunctions resulting in the drone failing to correct report 
airborne objects or cause the drone to crash. 
 

4.3 Standards and Ethics 
When working on this project, the team will be adhering to several standards. First, all code that will be 
written will standardized and documented, making it easy to maintain, understand, and debug if necessary. 
To ensure high software quality and team cohesion, software peer reviews will be incorporated to ensure 
that all team members are familiar with each other’s code and purpose. For any code written in C++, C++14 
standards10 will be used. Furthermore, since a lot of the code base will initially be written using the Python 
programming language, PEP 8 recommended style guide for Python will be followed. There are several IEEE 
standards which are applicable to the project. These standards include floating point standardization, test 
methodology standardization, as well as code standardization. It will be important to adhere to these 

                                                 
10 “ISO - International Organization for Standardization.” Information technology – Programming 

languages – C++, 30 Nov. 2017, www.iso.org/standard/64029.html. 
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standards for when the code is transferred to the client’s system. The Code of Ethics11, Code of Conduct12, 
and Computer Technology Standards13 of IEEE will be followed throughout this project. 

 

  

                                                 
11 IEEE Code of Ethics. IEEE, www.ieee.org/about/corporate/governance/p7-8.html. 
12 IEEE Code of Conduct. IEEE, June 2014, m.ieee.org/about/ieee_code_of_conduct.pdf. 
13 "Computer Technology Standards." IEEE Standards Association. IEEE, 2017. Web. 31 Mar. 2017. 

http://standards.ieee.org/cgi-
bin/lp_index?status=active&%3Bpg=40&%3Btype=standard&%3Bcoll=15. 
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5 Design 
This section provides a high-level overview of the system in a block diagram and provides a short 
discussion about the different approaches available and the approach that was taken with the project. 
 

5.1 Proposed System Block Diagram 
A very high-level overview of the system can be seen in Figure 2 below. The system input is either a video 
feed provided by an open source flight simulator, FlightGear, or individual images. OpenCV is used to 
capture the input and resize it to network specific dimension. The information is then sent to the Caffe 
deep learning framework where the trained neural network will predict what the image contains. Finally, 
the system outputs to the user its prediction on what it believes the object in the image is as well as its 
confidence levels. 
 

 
Figure 2:  A.L.V.I.N.N. Block Diagram 

5.2 Assessment of Proposed Methods 
The following subsections describe an approach and solution for every aspect of A.L.V.I.N.N. These include 
hardware, software, image preprocessing, computer vision, and neural networks. 
 

5.2.1 Hardware and Software 
In terms of hardware, the NVIDIA Jetson TK1 and TX1 boards were suggested by the client. After considering 
both boards, the team has decided to go with the TX1 board which can be purchased as a kit incorporating 
I/O, HDMI, USB, WI-FI, and a camera interface. NVIDIA also offers CUDA, an application programming 
interface, to deploy the neural network architecture onto the GPU. All requirements for meeting the goals 
outlined for the project should be possible using these predefined interfaces. Other possible interfaces, 
outside the scope of this project, would include the onboard GPS and the autopilot system Rockwell Collins 
has running on the drone. 

 
In terms of software, there are multiple viable options. MATLAB is a programming environment and 
language all in one. Used by engineers and scientist for visualizing data to develop and running algorithms 
in the areas of robotics, signal processing, and image processing. MATLAB presents itself as a viable option 
because it has toolboxes for computer vision, machine learning, and neural networks. OpenCV is an open 
source computer vision library that can be used with many of today's popular programming languages. The 
functions in OpenCV are specifically written towards computer vision with focus on areas such as two-
dimensional and three-dimensional features, motion tracking, learning, and artificial neural networks. 
Google’s TensorFlow is another open source library which focuses more on machine learning and neural 
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networks and is available for C++ or Python programming languages. Caffe is an OpenCV framework that 
can be used for machine learning and neural networks. 
 
The team has decided to go with Python as the programming language of choice for libraries because more 
team members have used it than C++. For those team members who have not used either language, Python 
is said to be the easier of the two to learn. OpenCV’s focus is computer vision thus it has more functions to 
work with for this project. OpenCV is open source versus a hefty price tag for MATLAB. After consulting 
different popular technologies and frameworks, it was decided that the Caffe deep learning framework 
would be the best choice due to its expressive architecture, extensible code base, and speed optimizations. 
 

5.2.2 Image Preprocessing and Feature Detection 
Images are the heart of this project and without images, there are no objects to detect. Because of this, 
being able to read an image and work with it is an important first step. Image processing involves altering 
the image to help acquire specific information quickly. For example, a green square could be found by 
removing all other colors first and then looking for specific details, or key features, of a square. Other image 
processing techniques can help remove noise such as discolored pixels that appear as specks or dots in an 
image. 

 
Image preprocessing was done entirely in OpenCV. To begin this process, the team first learned how to 
read an image into the program. This was a straightforward technique requiring one line of code. With 
access to the image, work could begin by processing the image. The first processing technique used 
involved converting from a colored image to a gray scaled image. At such an early stage in the project, 
colors are not a big concern so it is easiest to eliminate them. This takes away the complexity of working 
with the red, green, and blue color intensities out of the equation and leaves just the one-color intensity. 

 
Next, blurring techniques were considered to help remove noise and smooth out rough edges. In its 
simplistic form, blurring works by looking at a pixel and the surrounding pixels to determine what color it 
should be. The blurring methods explored included OpenCV’s blur, Gaussian blur, median blur, and bilateral 
filter. 

 
After blurring techniques, thresholding was the next image processing technique that was considered. This 
technique involves setting a threshold for the color intensity. A limit is set based on the gray scale intensity 
or shade of gray. Shades either above or below the limit can be removed while the remaining shades can 
be converted to all one shade. The thresholding technique along with blurring can be used to remove noise 
and provide a clean black and white image. 

 
Once blurring and thresholding techniques were applied, an attempt was made at detecting features in an 
image. There are a few techniques available for detecting features that were considered including Harris 
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Corner Detector14, Shi-Thomasi Corner Detector15, Scale-Invariant Feature Transform (SIFT) 16, Speeded-Up 
Robust Features (SURF)17, FAST Algorithm for Corner Detection18, Binary Robust Independent Elementary 
Features (BRIEF)19, and Oriented FAST and Rotated BRIEF (ORB)20. After learning about each one, it was 
decided to focus on ORB since it was developed by OpenCV combining the FAST and the BRIEF techniques 
and matches performance of the SIFT and the SURF technique. 

 
After detecting features in an object, the next logical step was trying to match features in one image to 
those in another image. Two methods for matching features were used:  a brute force matcher and a Fast 
Library for Approximate Nearest Neighbors (FLANN)21. When comparing the same image both methods 
worked equally well. Matching an image to the geometrically similar image but on a different scale and 
matching an image to an image with multiple objects was also tried. The brute force method made more 
matches between images; however, not all of them were correct. The FLANN method made fewer matches 
compared to the brute force method, but the method also had fewer errors. 
 
These techniques are time consuming and provided poor results when trying to match objects based on 
features. To keep processing time of the system to a minimum image preprocessing will be limited to 
resizing. For resizing, an image will be converted to a size that works best with a given neural network. 
 

5.2.3 Computer Vision 
Traditional computer vision methods utilize similar techniques as those discussed in Section 5.2.2, to detect 
objects in an image. First a set of images containing the object are processed and key features are extracted 
into a vector representing the object. Labels can be applied to these image sets if multiple objects are to 
be distinguishable. 

                                                 
14 “Harris Corner Detection.” Harris Corner Detection — OpenCV 3.0.0-Dev documentation, OpenCV.org, 

docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners. 

15 “Shi-Tomasi Corner Detector & Good Features to Track.” Shi-Tomasi Corner Detector & Good Features 
to Track — OpenCV 3.0.0-Dev documentation, OpenCV.org, docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_shi_tomasi/py_shi_tomasi.html#shi-tomasi. 

16 “Introduction to SIFT (Scale-Invariant Feature Transform).” Introduction to SIFT (Scale-Invariant Feature 
Transform) — OpenCV 3.0.0-Dev documentation, OpenCV.org, docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html#sift-intro. 

17 “Introduction to SURF (Speeded-Up Robust Features).” Introduction to SURF (Speeded-Up Robust 
Features) — OpenCV 3.0.0-Dev documentation, OpenCV.org, docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html#surf. 

18 “FAST Algorithm for Corner Detection.” FAST Algorithm for Corner Detection — OpenCV 3.0.0-Dev 
documentation, OpenCV.org, docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html#fast. 

19 “BRIEF (Binary Robust Independent Elementary Features).” BRIEF (Binary Robust Independent 
Elementary Features) — OpenCV 3.0.0-Dev documentation, OpenCV.org, docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_brief/py_brief.html#brief. 

20 “ORB (Oriented FAST and Rotated BRIEF).” ORB (Oriented FAST and Rotated BRIEF) — OpenCV 3.0.0-
Dev documentation, OpenCV.org, docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html#orb. 

21 “Feature Matching.” Feature Matching — OpenCV 3.0.0-Dev documentation, OpenCV.org, 
docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html#matcher. 
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Test images are then processed by the same methods and the key feature vector extracted. To classify an 
object the test vector is compared to the training vectors. Based on the number of key feature matches 
and a threshold value, the image is classified as the label on the vector it best matches if the number of 
matches are greater than the threshold value. 
 
Computer vision has several methods for evaluating models and improving the model’s algorithmic 
capabilities. Simple model evaluation includes cross validation - a technique that partitions the original 
sample into a training set and a testing set. A simple type of cross validation called the holdout method. 
Some more advanced methods of evaluating models include repeated holdout and cross validation. The 
repeated holdout method is the holdout method repeated multiple times with the dataset redistributed 
across the training and test sets each iteration. Using the repeated holdout method provides a better 
estimate on how well the model performs on a random test set while providing an idea about the model's 
stability. There are numerous methods for performing cross validation. The cross-validation method 
considered is the k-fold cross validation method. The dataset is divided into k equally sized groups; these 
groups are called folds. One-fold is left to be used as the test group while the model is trained on the other 
groups before testing. The process is repeated until each group has been tested and the results averaged 
to estimate the algorithms capability. 
 
OpenCV has a FaceRecognizer module that can be trained to detect and identify a person by their face. The 
FaceRecognizer project is not new and there are various tutorials online about how to get started with it. 
The team decided this was worth exploring to begin exploration in computer vision. 
 

5.2.4 Neural Networks 
With the application revolving around neural networks, focus for the project was spent learning about 
neural network frameworks, such as TensorFlow and Caffe. Initially, the team practiced using these 
frameworks to create a handwritten digit classifier using a feedforward neural network. This network’s 
structure was based on the format of the MNIST dataset. This dataset is comprised of 60,000 training 
images written by 250 people and 10,000 testing images written by a separate set of 250 people. Images 
contain a single centered digit with a 28 by 28 resolution. The benefit to this approach is the simplified 
design however it also creates many other problems. More information about this design can be found in 
Section 8.3. 
 
CNNs were also explored due to their success in image recognition. Their advantages make them a better 
choice for A.L.V.I.N.N. when compared to feedforward neural networks. CNN’s are modeled after parts of 
the visual cortex and are specialized to recognize complex images without drastically increasing processing 
time per image. They can achieve this by extracting multiple feature maps from an image and as well as 
compressing the information in the image. The main disadvantage of CNNs is their increased complexity 
and lengthy training time. These challenges were mitigated by implementing CNNs designed by 
researchers. Most of the information the team used to learn and implement these networks is contained 
in Section 3. 
 

5.3 System Constraints 
Several system constraints have been identified with the project. Knowing the system would be placed on 
a drone, the size of the embedded board had to be considered. The NVIDIA Jetson TX1 used by the team is 
the Developer Kit which may be too large to fit in a drone. NVIDIA offers a stripped-down version that a 
user can modify to reduce its size. Other physical limitations of the NVIDIA Jetson TX1, such as computing 
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power and memory, limit what the project can achieve. These limitations affect the speed and accuracy of 
the networks. 

 
The system is also constrained by how well the neural network is trained. If a system is only trained to 
detect aircraft, then it will not detect other obstacles such as birds or a balloon that has floated away from 
a child. Additionally, the amount and type of data used to train the system affects how confident the 
network is in classifying an object. If a large amount of data is used to train a system, a high-performance 
computing cluster may be needed to train the networks at a quicker rate than a general computer. Not 
having access to such a cluster could hinder network retraining abilities. 

 
Assumptions were made during the development process that could potentially create system constraints. 
The system was intended for aeronautical uses and not for uses on the ground or surveying the terrain 
from above. It is assumed that the system will be used commercially and not intended for household use.  
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6 Challenges 
The immediately observable challenges faced in this project are knowledge and theory related. The 
machine learning field was unfamiliar territory to most of the team. The vastness of this field and the open-
endedness of the client’s expectations resulted in the need to be careful before investing a lot of time in a 
technique or method that could not be incorporated into the project. Gleaning advice and information 
from the advisors and project stakeholders, who are much more knowledgeable on machine learning and 
computer vision, was paramount to a successful project. 

 
The NVIDIA Jetson TX1 board was acquired for this project and comes with no pre-installed software 
required for basic operations. Since the team did not incorporate the board until later in the project, not 
enough time was allocated for initial setup and debugging of the board. This was also a challenge for the 
team as setting up a board is something no team member had done prior to this project. Another challenge 
with the board included getting the onboard camera working. The team was unable to get this working but 
could use a USB web camera instead. 
 
Besides a feed from a video camera the team wanted to a use prerecorded video and a video streamed 
from another source. This presented a challenge as the team incorporated the use of GStreamer, a 
multimedia framework that the team has never used before. Additionally, the team was unable to 
incorporate prerecorded video and GStreamer feeds into NVIDIA’s proprietary neural network, DetectNet.  

The issues with the onboard camera and DetectNet are ongoing issues that other users reported 
experiencing. To date, it is not known whether a fix has been issued to resolve these problems. 
 
This project involved a client, two advisors and six team members. For many team members, this was their 
first experience being on a large project and part of a bigger team. With so many people involved, 
communication was going to be key to keep everyone on the same page because lack of communication 
or lack of clarity led to a few problems, luckily none that hindered development. With the client having an 
open-ended vision and only very general expectations set forth for the project, the team had to make sure 
contact with the client was established to ensure the client’s satisfaction with the direction in which the 
project moved. Additionally, team members had other classes and tasks that require their attention outside 
of this project; members had to be diligent in their work and avoid any lapses in accountability. At times, 
these other commitments resulted in the slowing of forward progress on the project. 
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7 Testing and Development 
Due to the many components and complexity of A.L.V.I.N.N., thorough testing was needed to ensure a 
reliable design. This testing process was split into three major sections: image preprocessing and feature 
detection, computer vision, and neural networks. 
 

7.1 Image Preprocessing and Feature Detection 
An image of an ‘X’ was used to test the effectiveness of different image preprocessing techniques and 
feature detection methods. The ‘X’ provides key features of internal and external corners as well as multiple 
edges. By creating an ‘X’ in Microsoft Paint the team could control the shape of these corners, the 
smoothness of the edges, and add noise. Two ‘X’ images, one with sharp corners and smooth edges and 
another with rounded corners and jagged edges, were used for testing. These images were used to test 
blurring and thresholding methods resulting in black and white images that the team compared for 
increased edge smoothness and reduction of noise. 

 
To further verify the effectiveness of image preprocessing, the team utilized feature detection to identify 
key features. A rougher edge will contain possible key features that a smooth edge doesn’t. Noise in an 
image may also be mistaken as a key feature. By incorporating feature detection, the team could evaluate 
how well noise was reduced and edges smoothed by seeing a reduction in the number of features detected. 
 
Matching verifies two identical images by comparing key features. To test how well features could be 
matched the team compared the same image at different scales (e.g. ‘X’ vs. ‘x’). The testing was also 
extended to include trying to match an image (e.g. ‘X’ with ‘X’) when multiple objects (e.g. ‘A B C D …’) are 
present. 

 

7.2 Computer Vision 
Regarding computer vision, a basic object recognition use-case was explored using a OpenCV library. 
Experiments began by using pre-existing code to explore how to perform detection of faces using OpenCV’s 
FaceRecognizer module. Information on how to use the FaceRecognizer was provided by Geitgey22 and 
OpenCV’s “Cascade Classifier Training”. 23 The initial test methods compared the results obtained to results 
that have been published using the holdout method, a model evaluation method. The method involved 
dividing a dataset into a training set and a test set with labels for each data point. After the model was 
trained on the training set, the team could determine how well the model did by comparing its predictions 
of the testing set with its labels. 
 
As the algorithms improve, more advanced testing techniques will need to be used to thoroughly test the 
algorithms’ capabilities. Some more advanced methods include repeated holdout and cross validation. The 
repeated holdout method is the holdout method repeated multiple times with the dataset redistributed 
across the training and test sets each iteration. Using the repeated holdout method provides a better 

                                                 
22 Geitgey, Adam. "Machine Learning Is Fun! Part 4: Modern Face Recognition with Deep Learning." 

Medium. Medium Corporation, 24 July 2016. Web. 31 Mar. 2017. 
<https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-
deep-learning-c3cffc121d78#.7732t9p7a>. 

23 "Cascade Classifier Training." Cascade Classifier Training — OpenCV 2.4.13.2 Documentation. OpenCV 
Dev Team, 16 Dec. 2016. Web. 31 Mar. 2017. 
<http://docs.opencv.org/2.4.13.2/doc/user_guide/ug_traincascade.html>. 
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estimate on how well the model performs on a random test set while providing an idea about the model's 
stability. There are numerous methods for performing cross validation. The cross-validation method 
considered is the k-fold cross validation method. The dataset is divided into k equally sized groups; these 
groups are called folds. One-fold is left to be used as the test group while the model is trained on the other 
groups before testing. The process is repeated until each group has been tested and the results averaged 
to estimate the algorithms capability. 
 

7.3 Neural Networks 
This section covers final testing of the system with each neural network being tested individually. Testing 
began by looking at a test set of 10,000 images contained within the MNIST dataset. The team recorded 
the number of correctly classified images by the trained neural network to find its accuracy. Then the team 
looked further into training convolutional neural networks on much larger datasets with a variety of images. 
Finally, several pre-trained neural networks were tested against a small set of data. The results were 
measured a network’s ability to detect and classify objects along with its associated confidence level. 
System performance was measured on these same neural networks to analyze speed, memory usage, and 
power consumption while streaming video. 
 
As stated in Section 3.1, training neural networks, especially CNNs, can be a time-consuming task. The 
number of images a network is trained on affects the performance of the network. To achieve a quality 
network that can accurately detect and classify an object requires training on thousands of images 
containing the object and thousands of images without the object. Training on this large of a data set can 
set a project back if the appropriate amount of time is not given. To determine the time constraints and 
best method for training, the team used a personal laptop and the high-performance computing cluster 
provided by Iowa State University. A network was trained using both computing devices and the times 
compared. 
 
To test a network’s ability to detect and classify objects, different sets of images were used. The different 
sets of images contained no aircraft, a single aircraft and multiple aircraft. The set containing no aircraft 
was used to determine if the network falsely detected an aircraft. The sets with aircraft contained different 
types of aircraft, in different positions, at different distances from the camera, and over varying 
backgrounds. This determined if the network performed well at detecting and classifying an object over a 
variety of conditions or only in specific situations. 
 
Testing the speed, power, and memory performance metrics was done well running a prerecorded video 
through the system. Timers were used in the code to capture the time when a video frame was passed to 
the neural network and the time the network finished processing it. From this, the number of frames per 
second each network was capable of processing was determined. NVIDIA includes a system monitor on the 
TX1 enabling data, such as memory and power demands, to be collected while the system was running. 
 
Image size has a huge effect on the performance of the system. Larger images contain more data resulting 
in detecting and classifying objects with higher confidence; however, it takes longer to process. Smaller 
images are faster to process because they have less data to process but less data results in lower confidence 
in the classification. Google’s MobileNets was tested with three different image sizes to see how processing 
speed and object detection and classification were influenced by image size. 
 
The team used different statistical methods to compare the testing results of each neural network. Since 
classification outcomes (aircraft or not) were known on the test data, a confusion matrix was used to 
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analyze the classification performance of the different neural networks. A resulting table of confusion for 
aircraft was constructed for each network. From the table, several statistics were analyzed including 
sensitivity (true positive rate), specificity (true negative rate), precision, negative predictive values, 
accuracy, miss rate (or false negative rate), and fall out (or false positive rate).  
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8 Results 
This section covers the results of the testing covered in Section 7. Due to timing constraints within the 
second semester, the implementation of a neural network from scratch was unattainable. As a result, al l 
members of the team focused on finding existing neural networks that would fit the goals of this project. 
Seven neural networks total were tested: DetectNet, SSD: Single Shot MultiBox Detector, YOLOv2, Tiny 
YOLO, and Google MobileNets with images sizes of 150x150PX, 300x300PX, and 450x450PX. The existing 
neural networks incorporated image processing and computer vision into their design; therefore, after 
running initial testing on image processing and computer vision during the first semester, it was 
unnecessary to explore these areas further. 
 

8.1 Image Preprocessing and Feature Detection 
The results from image preprocessing of a simple ‘X’ were encouraging. For an initial test, a smoothing, or 
blurring, process was implemented to a red ‘X’ help smooth the edges and eliminate noise. Figure 3 shows 
the original image and the image after it has been converted to grayscale. At this stage, the ‘X’ still had 
rough edges and noise surrounding it. 
 

 
Figure 3:  Original and Grayscale Images 

The blurring methods explored to smooth edges and eliminate noise included a normalized box filter, a 
Gaussian filter, a median filter, and a bilateral filter. The results of these methods on the original grayscale 
‘X’ can be seen in Figure 4. Both the Gaussian blur and median blur methods appear to have removed the 
noise. The Gaussian filter also provides a smoother edge than the other three methods.  
 

 
Figure 4: The four different filters used on the grayscale 'X' 

For a better comparison, two thresholding techniques were applied to each blurred image:  a basic 
thresholding technique and an adaptive thresholding technique. The results of applying these two 
techniques is shown in Figure 5 below. Using a high threshold value, everything in the image that was not 
already white was converted to black. This showed that more noise was present in the image after blurring 
than what initially appeared. 
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Figure 5: All four filter techniques used in conjunction with a basic and an adaptive thresholding technique  

using a high threshold value 

By adjusting the threshold value, the amount of black noise appearing can be reduced, as seen in Figure 6. 
Comparing the results, it was decided that the combination of the Gaussian filter and adaptive thresholding 
provided the most noise reduction and smoothest edges without having to lower the threshold value. 
 

 
Figure 6:  Basic and adaptive thresholding using lower threshold values 

Feature detection began with a basic ‘X’. Feature detection identified key points in the image that were 
used to recognize the same type of key features in other images when scanning for potential matches (i.e., 
detecting similar objects). The rough edges of the original image resulted in too many key points, making it 
hard to be able to detect other ‘X’s from the original ‘X’. The image was blurred and the thresholding 
technique applied to reduce the number of key points. After blurring and thresholding, the edges of the 
original image still had many points that stood out. 
 
Next, the above process was repeated on an ‘X’ that already had smooth edges and did not need blurring 
or thresholding techniques applied to it. Beginning with smooth edges allowed the number of key features 
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to be significantly reduced. The key features of both the original ‘X’ with blurring and thresholding 
techniques applied and the smooth ‘X’ can been identified in green in Figure 7 below. 

 

 
Figure 7: Feature Detection with the original ‘X’ after blurring and thresholding 
and with smooth-edged ‘X’ with key features or key points are shown in green 

The feature matching tests that have been performed so far have had unsatisfying results. The first issue 
was matching key features on the ‘X’ with similar key features on other object types resulted in too many 
incorrect matches. Figure 8 shows feature matching displayed through green lines going from the ‘X’ to the 
‘B’ and the ‘n’. The second issue was matching the wrong points on the correct object. Figure 8 also shows 
this issue with two green lines between the ‘X’ objects with one line going from the bottom center of one 
‘X’ to the top center of the other ‘X’. Finally, there was the issue of not matching key points between 
geometrically similar objects. The small ‘x’ in Figure 8 shows no matching points in common with the 
comparison ‘X’. 
 

 
Figure 8: Feature Matching 

Though the thresholding results were promising, the data obtained from matching objects was too 
inconsistent to be of use. These inconsistencies could be related to the chosen feature detection methods. 
With the off-the-shelf neural networks incorporating image processing into their design, attempts to 
improve these results were abandoned. 
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8.2 Computer Vision 
Work began by feeding simple images containing faces to the program and converting these images into 
grayscale. The program was then extended to include the capability to distinguish between faces belonging 
to different people (by constructing a labeled training dataset). Upon consolidation of this feature, a video 
stream was fed from the webcam to the facial recognition software. A green square box was drawn around 
the recognized faces, as well as displaying a name on the command-line, should a familiar face have been 
encountered. Figure 9 shows an example of someone being recognized. 
 

 
Figure 9: Facial recognition of David Schott 

For the module to be able to successfully detect, box, and identify a team member showed promising 
results. However, with the off-the-shelf neural networks incorporating computer vision into their design, 
further explanation into computer vision was deserted. 
 

8.3 Neural Networks 
To become more familiar with the concept of neural networks and their limitations, a basic neural network 
was implemented which classified handwritten digits (see Section 5.2.4 for more details). To sum up the 
findings, the neural network implemented was slow and poor at recognizing complex images. For these 
reasons, this type of neural network model will not work for the system. The images taken by the system 
will be very complex and with a lot of noise or distortions. Also, it is important that the images are processed 
as fast as possible to work towards being able to feed the system continuous video footage. 
 
The teams first neural network design, the handwritten digit classifier, was structured initially with three 
layers. The first layer contained 784 input neurons, one for each pixel in the image. The second layer, or 
the hidden layer, contained 15 neurons to compress the information of the previous layer. The final layer 
consisted of 10 output neurons where each neuron reports the confidence of the class for the input image 
(numbers 0 through 9). Additionally, the team modified the number of layers as well as the number of 
neurons in each layer. Increasing both parameters slowed down training but increased the accuracy of the 
model. 
 
The results from testing the three-layered network with the MNIST dataset showed that 93% of the digits 
were correctly classified. While this may sound impressive, it was not very reliable when comparing the 
results to other solutions that solve the same problem. This approach for processing images was naïve 
because only centered digits could be correctly classified, the network had trouble with digits that were 
rotated, and the model ails when processing higher resolution images with millions of pixels. Compared to 
other solutions available, this method is not recommended due to its poor accuracy. 
 
After finishing the work with traditional feed-forward neural networks and understanding the limitations 
they suffer from, the team decided to explore CNNs because they specialize in image classification. Some 
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of the major problems with the previous design was that as the images became larger, the network size 
increases exponentially thus slowing down training and execution speeds. Most importantly, when a feed 
forward neural network processes an image, spatial locality is not preserved, the image is seen in one 
dimension when it really is a two-dimensional input. CNNs solve both major problems by introducing image 
convolution with kernels and by subsampling images down further. This is apparent when observing the 
testing data collected by the team. 

 
For investigating training speeds, testing began by modifying existing Caffe training programs. A total of 
8000 images were used from ImageNet for testing with half of the images containing aircraft and half of 
the images not containing aircraft. Training took place on two different systems: a personal laptop and the 
high-performance computing cluster provided by Iowa State University. Specifications from both systems 
can be seen in Table 3 below.  

 

Device Processor 
Number  
of Cores 

Memory 
Accelerator 

Card 

Lenovo G50-45  
Personal Laptop 

1x 1.8 GHz 4-core 
AMD A4-6210 

4 8 GB None 

ISU’s HPC Node (GPU) 
2x 2.0 GHz 8-core 

Intel E5 2650 
16 64 GB 

NVIDIA K20 
Kepler GPU 

Table 3: System Specifications 

Initially, 20,000 iterations were run for training. The HPC can run these iterations in a timely manner; 
however, on the personal laptop it was going to take too long, possibly several weeks. The number of 
iterations were then reduced to 3,000 and the lapsed training time on both the typical Laptop and Iowa 
State’s Computing cluster was then monitored in a log file. A graph summarizing the elapsed time for the 
first 3000 iterations can be seen below in Figure 10. 
 

 
Figure 10: Training Time of Personal Laptop vs. HPC Cluster Node 

Based on these training results, the neural network achieved a classification accuracy of 90.9%. The training 
on the HPC GPU node led to a significant speed improvement over training on a CPU-only personal laptop. 
GPU acceleration allowed the intensive mathematical computations to be performed 221.3 times faster. In 
theory, the performance gains from training on the HPC node could be even greater if the step size was 
adapted to fully utilize the extra memory available on the HPC node.  
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Using the HPC node to train or retrain a neural network would have been very useful for this project. 
However, since a neural network was not built from the ground up and since retraining was not utilized 
due to timing constraints, the team did not need to use the HPC cluster after this initial testing because the 
off-the-shelf neural network models used were pre-trained. 
 
Five different pre-made neural networks were tested and evaluated on their performance: DetectNet, SSD: 
Single Shot MultiBox Detector, YOLOv2, Tiny YOLO, and Google MobileNets. Google MobileNets was tested 
using three different image sizes, 150x150 PX, 300x300 PX, and 450x450 PX, making the total number of 
neural networks analyzed seven. Each neural network was tested on a set of 30 images containing plane 
and non-plane objects. For each image, the objects in the image that could potentially be identified by a 
neural network were recorded. Within these 30 images, a total of 39 aircrafts and 14 other objects (non-
aircraft) were identified.  
 
The images were then processed through each of the networks and the data was collected on whether the 
objects in the images were correctly identified as an aircraft or ignored. For example, one image tested 
contained two objects: a chinook hauling a Jeep. A neural network should classify the chinook as an aircraft 
while ignoring the Jeep. If the network correctly identified the chinook as an aircraft at 50% confidence or 
above, it received a score of ‘1’ for that classification. If it did not detect the aircraft, did not correctly 
identify the aircraft, or did not have a confidence above 50%, it received a score of ‘0’. For the Jeep, if a 
network did not classify the Jeep as an aircraft or if its confidence was below 50%, it received a score of ‘1’. 
If a network classified the Jeep as an aircraft at or above 50% confidence, it received a score of ‘0’. 
 
A table of confusion for aircraft was then constructed for each neural network. The fashion in which the 
data was scored in the table can be seen in Table 4. From these tables, several statistics were analyzed. 
 

  
Actual Class 

  
Aircraft Non-aircraft 

Predicted 
Class 

Aircraft True Positives 
False Positive  
(Type I Error) 

Non-aircraft 
False Negative  
(Type II Error) 

True Negative 

Table 4: Table of Confusion for Aircraft 

From these tables, several statistics were analyzed. Sensitivity (true positive rate) was measured to see how 
each network could correctly identify an aircraft in an image when one was present. Specificity (true 
negative rate) was measured to see if a network could correctly identify that no aircraft was present in an 
image when there was no aircraft in the images. Precision was considered to see the percent of aircraft 
being correctly classified from the total number of aircraft the network detected. The negative predictive 
value was analyzed to see what percent of objects correctly classified as not an aircraft from the total 
number of objects the network not classified as not an aircraft. Accuracy was considered to analyze the 
total percent of classifications correct. Miss rate (false negative rate) was used to see the percent of time 
the network didn't think an object was an aircraft but it really was an aircraft and conversely, the fallout 
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(false positive rate, or “false alarm”) was used to see the percent of time the network thought the object 
was an aircraft when it was not an aircraft.  
 
The results of these performance statistics for each network can be seen below in Table 5. It should be 
noted that specificity was not included in the table below because DetectNet was the only neural network 
of the seven had false positives (Type I errors). These false positives can be identified when considering the 
fallout and precision results, making a specificity column unnecessary. 
 

Model Sensitivity Precision 
Negative 

Predictor Value 
Accuracy Miss Rate Fallout 

DetectNet 76.92 88.24 52.63 75.47 23.08 28.57 

SSD 56.41 100.00 45.16 67.92 43.59 0.00 

YOLOv2 71.79 100.00 56.00 79.25 28.21 0.00 

Tiny YOLO 46.15 100.00 40.00 60.38 53.85 0.00 

MobileNets 150 25.64 100.00 32.56 45.28 74.36 0.00 

MobileNets 300 66.67 100.00 51.85 75.47 33.33 0.00 

MobileNets 450 71.79 100.00 56.00 79.25 28.21 0.00 

Table 5: Performance Statistics in Percents 

A few interesting observations were noted but not fully understood. Out of the 25 images containing at 
least one aircraft, there were seven images in which all seven of the neural networks successfully identified 
the aircraft present in the image and there were four images that no network could detect an aircraft 
present. There seems to be no consistent feature that helped or hindered the networks in their detection 
of these 11 images.  
 
Another observation was that four of the neural networks, DetectNet, Tiny YOLO, MobileNets 300 and 
MobileNets 450, detected two to three additional objects within the 30 images that were not listed as an 
object to detect or ignore. Part of the reason these objects were not considered was because the detection 
was made within another object, for instance, DetectNet detected the right rotor of a heliplane and an 
aircraft along with detecting the entire heliplane as an aircraft. 

 

Model FPS 
Memory 

Usage (GB) 
Power (mW) 

DetectNet 9.60 2.34 10120 

SSD 5.57 2.57 11555 
YOLOv2 1.75 3.23 11994 

Tiny YOLO 6.20 2.21 10508 

MobileNets 150 4.15 2.73 6678 

MobileNets 300 3.56 2.84 7292 

MobileNets 450 3.02 3.04 9166 

Idle CPU n/a 1.16 3343 
Table 6: Performance Metrics 

To gain a better understanding of how each neural network performed under a continuous video stream, 
the team recorded frames per second (FPS), memory usage in GB, and power in mW. The performance 
metrics for each network can be seen in Table 6 above. Performance of each network was then analyzed 
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by looking at the throughput per Watt where throughput is defined as the number of frames per second 
processed by the network. These results can be seen in Figure 11. 
 
As suspected, the resizing of an image affects the speed and accuracy of a neural network. For Google’s 
MobileNets, smaller images, 150x150PX, processed more frames per second and consumed less power but 
the accuracy of these smaller images suffered as a result. The 450x450PX images were superior in terms of 
accuracy but the network was slower to process the data. 
 

 
Figure 11: Image throughput per Watt 

 
Each neural network had different strengths and weaknesses. YOLOv2 and Google MobileNets 450 had 
greater accuracy towards detecting aircraft and the latter consumed less power. However, neither network 
performed well for real-time video processing. DetectNet had the highest probability of detection, the 
lowest miss rate, and the best FPS performance, but it also had the greatest fallout. For this project, both 
speed and accuracy are essential to this real-time system to correctly classify objects and perform quickly. 
Comparing both performance and statistical metrics, Google’s MobileNets 300, though not the best in any 
category, was fairly reliable in all areas. 
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9 Concluding Results and Future Work 
The primary objective of the project was to appreciate what it is like working on a large project with a 
multidisciplinary engineering team. Through the development of a project plan and a design document, the 
team could begin working towards the end goal. Along the way, the team expanded their knowledge base 
on image processing, computer vision, machine learning, and neural networks. 

 
From there, the team explored what research had already been done on the topics and what was already 
available that would facilitate incorporating computer vision and machine learning into the project. Using 
the background experience from team members, previously coded examples, advisor expertise, and 
tutorials, the team experimented with different neural networks to see how each one performed. Based 
on the performance of each neural network the team made a final decision on which one to use with the 
hardware suggested by the client.  
 
Due to the time constraints imposed on the team members while working on this design, there are several 
ways to advance this study. One such way to improve results would be to address the challenges presented 
in Section 6. The team could have spent more time debugging the streaming errors with DetectNet, since 
DetectNet had promising results, and possibly considered using a different board that supports more 
network functions. 
 
Another option would be to spend the time building a neural network from the ground up to train and 
apply constraints that specifically meet the needs of the project instead of using a network that has been 
pre-trained. As seen in Hans et al., using different neural networks for different tasks could be implemented 
as well. If a neural network was implemented from scratch, the team could revisit their efforts with image 
processing and computer vision. For image processing, more time would need to be spent understanding 
how the feature detection and matching functions work along with investigating how changing parameters 
could improve results. For computer vision, the team could take a more in depth look at what OpenCV has 
available or explore other options. 

 
Regarding testing, a better method of testing should be developed. More data in the form of images, both 
with and without planes, should be trained and tested on the neural networks. There should also be an 
attempt to remove data bias present from having only 16.7% of the test images not containing 
planes.  Furthermore, the team should harness the retraining capabilities of the neural networks to produce 
better results overtime. 
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