
A.L.V.I.N.N Project Plan

Autonomous Learning Vehicle Incorporating Neural Networks

Dec1709

Rockwell Collins – Josh Bertram

Drs. Jones & Zambreno

Bijan Choobineh – Team Leader
Darren Davis – Team Leader

Tracy La Van – Communication Lead
Jesse Luedtke – Key Concept Holder
David Schott – Key Concept Holder

Robert Stemig – Webmaster

dec1709@iastate.edu
http://dec1709.sd.ece.iastate.edu/

Revised: April 20, 2017 / Version 3

mailto:dec1709@iastate.edu
http://dec1709.sd.ece.iastate.edu/

 2

Table of Contents

1 Introduction ... 3
1.1 Project Statement.. 3
1.2 Purpose .. 3
1.3 Goals .. 3

2 Deliverables .. 4

3 Design ... 5
3.1 Previous Work / Previous Literature ... 5
3.2 Proposed System Block Diagram ... 6
3.3 Assessment of Proposed Methods .. 7

3.3.1 Hardware and Software ... 7
3.3.2 Image Preprocessing .. 8
3.3.3 Computer Vision .. 9
3.3.4 Neural Networks .. 9

3.4 Validation... 11
3.4.1 Image Preprocessing .. 11
3.4.2 Computer Vision .. 12
3.4.3 Neural Networks .. 13

4 Project Requirements and Specifications .. 14
4.1 Functional Requirements .. 14
4.2 Non-Functional Requirements .. 14
4.3 Standards and Ethics ... 14

5 Challenges .. 15

6 Timeline .. 16
6.1 Overview .. 16
6.2 First Semester .. 16
6.3 Second Semester ... 16

7 Conclusion .. 18

8 References.. 19

 3

1 Introduction
1.1 Project Statement
This project is in collaboration with Rockwell Collins to use computer vision, machine learning, and neural
networks to have a drone detect objects in the air. Objects detected could include airplanes, helicopters,
other drones, flying birds or mammals, and stationary items such as buildings. This will require the team to
acquire theoretical knowledge in the computer vision and machine learning fields to be able to identify and
implement the software and hardware requirements capable of performing these tasks. Furthermore, part
of the project will consist of determining which machine learning algorithms are particularly suitable for
the object recognition task.

Computer vision tools will be used to preprocess images from a picture or video stream, as well as
extracting key features of objects. Machine learning will then be incorporated to perform teaching
operations for identifying objects or distinguishing between different objects based on those key features.
Since this problem is interdisciplinary in nature, the team will also have to investigate to what extent
computer vision techniques could support the machine learning based detection algorithms.

1.2 Purpose
Rockwell Collins is an aerospace electronics company for military and commercial aircraft. This technology
could be used in a military setting; object detection could be used to survey an area before sending in
troops by detecting enemy forces or identifying bombing locations of strategic targets. Commercial use
could include finding hotspots in forest fires, locating remote wreckage sites, finding lost hikers, or finding
survivors of a natural or manmade disaster. The diversity of these different use-cases shows the
extensibility, power, and usefulness of the project.

1.3 Goals
Rockwell Collins’ primary goal of this project is to detect objects in the air. To accomplish this goal, the
project will need to be broken into smaller, more manageable parts. First, the team will need to invest time
in expanding their knowledge base on computer vision, machine learning, and neural networks. Upon
acquisition of this knowledge, the next part will require the team to decide on which software to use and
how to use it for object detection. To accomplish this goal, detection will begin with detecting a simple
object (the letter ‘X’) on a plain background. The difficulty of detecting an object can then be increased by
adding in background noise, similar objects, and permutations of the same object. These techniques used
for detecting a simple object can then be applied towards detecting more complicated, airborne objects.
The next immediate goal is teaching the system to detect these objects in the same manner. With these
parts in place, the final phase will be implementing them together into a customized object detection
pipeline.

 4

2 Deliverables
To meet the goals outlined in the proposal, the following deliverables are necessary:

• Phase I: Education and determining what software/hardware to use
o Learn about computer vision, neural networks, and machine learning
o Determine what hardware to use
o Determine what software to use based on its capabilities and ability to integrate with the

selected hardware
• Phase II: Detecting a simple object

o Image processing - show an image, gray scale, threshold, ORB feature detection,
homography, and object matching (detecting an ‘X’)

o Detect an ‘X’ with background noise in an image
o Detect multiple ‘X’s in an image (with & without background noise)

• Phase III: Extending Phase I by detecting objects other than ‘X’s
o Detect airborne objects using elementary machine learning techniques
o Incorporate cascade classifier training using OpenCV and its Caffe framework.

• Phase IV: Detect and classify basic images such as ‘X’s or handwritten digits with a simple neural
network

o Training a network with images of ‘X’s and handwritten digits
o Discover the limitations of simple neural networks
o After detecting an object, report possible object identifications with associated confidence

levels
• Phase V: Detect and classify complex images with more advanced and deeper neural network

models
o Possibly use Convolutional Neural Networks (CNN)
o Use complex images that contain many objects in different locations and orientations
o Detect multiple objects and multiple complex objects within an image
o Identify objects even if objects have several different appearances (e.g. detecting a bird

with wings by its sides and with its wings expanded)
• Phase VI: After successfully being able to identify objects, begin feeding the system back-to-back

images, building up to real-time image capture and video feed
• Possible Bonus Features

o Tracking movements of identified objects
o Feature Recognition: Ability to recognize various features present on objects (i.e. colors,

symbols, unique traits, etc.)
o Use multiple cameras

▪ 360 o View: Like Nissan’s 360 o view technology around their vehicles, have a 360o
view of what is around the system laterally and what is above and/or below the
system

▪ Explore whether thermal imaging or night vision could be incorporated to the
proposed model

o Track fellow systems in air and follow the system via autopilot

 5

3 Design
3.1 Previous Work / Previous Literature
Below are several resources and research studies previously done on the topic of image detection using
machine learning and computer vision. Besides those listed below, machine learning work has been done
before on image detection and movement. For instance, Google has Google Draw Neural Network. The
team is still learning about potential resources while transitioning from the learning phase into the object
detection phase.

Deep learning has been a very popular area of research so there have been many reputable papers
published over the years. Additionally, a specific type of neural network called a Convolutional Neural
Network (CNN) has become popular recently and many more papers on the subject have been published.
Although some sources are at a higher level of abstraction in terms of their discussion, these references
are incredibly advantageous and should provide the team with a theoretical understanding of neural
networks and machine learning.

• Asaeedi, Saeed, Farzad Didehvar, and Ali Mohades. Alpha - Concave Hull, a Generalization of Convex
Hull. Department of Mathematics & Computer Science, Amirkabir University of Technology, n.d.
Web. 13 Apr. 2017.

o https://arxiv.org/ftp/arxiv/papers/1309/1309.7829.pdf
o Topological and geometric algorithms regarding alpha shapes can be used for image

detection as described in the paper. This image handling procedure using the alpha convex
hull can prove to be useful for detecting objects in images.

• Lecunn, Y., Bottou, L., Bengio, Y., Haffner, P. (1998) Gradient Based Learning Applied to Document

Recognition
o http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
o One of the first papers demonstrating the idea of CNN. At the time, computers lacked the

computation needed to train these networks. As a result, they did not become popular
until around a decade later.

• Krizhevsky, A., Sutskever, I., Hinton, G. E., (2012) ImageNet Classification with Deep Convolutional

Neural Networks
o http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-

neural-networks.pdf
o Recent paper on image classification using CNNs. This was the first CNN to win the

ImageNet Large-Scale Visual Recognition Challenge.

• Nielsen, Michael. Neural Networks and Deep Learning

o http://neuralnetworksanddeeplearning.com
o This source is more of a tutorial than actual research. This is an online book explaining

neural networks and solving a common classification problem.

• Simonyan, K., Zisserman, A. (2015) Very Deep Convolutional Networks for Large-Scale Image

Recognition
o https://arxiv.org/pdf/1409.1556v6.pdf

https://arxiv.org/ftp/arxiv/papers/1309/1309.7829.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://neuralnetworksanddeeplearning.com/
https://arxiv.org/pdf/1409.1556v6.pdf

 6

o This deep network, known as VGG, was designed such that it was simpler and deeper than
previous models. This model also changed some of the hyperparameters specific to CNN’s
such as the kernel size and stride. VGG altered these parameters so that more information
was processed for each image. The downside to this approach is training becomes much
slower.

3.2 Proposed System Block Diagram
A very high-level overview of the system can be seen in Figure 1 below. The system starts off by getting a
video input feed from some source. For this system, it will be reading in the video data via a flight simulator.
The visual feed is then processed via OpenCV and sent to the Caffe framework to preprocess the image via
blurring and smoothing techniques. In post preprocessing, the information is sent to the Caffe machine
learning framework where it will take the image and will use its trained neural network as well as its learning
algorithms to make a prediction on what the image is. It will proceed to evaluate its own model to
determine whether adjustments need to be made to the neural network model. This approach will allow
the neural network to be constantly learning. Finally, the system will output to the user its prediction on
what it believes the object in the image is as well as its confidence levels.

Figure 1: A.L.V.I.N.N Block Diagram

The design for the machine learning network part of the project is broken down into four
phases: Preprocessing, Learning, Evaluation, and Prediction (see Figure 2). In the Preprocessing phase, raw
images and streams of video data will be sent into the image processing unit for filtering and detection of
features from which datasets can be created for training and testing. From the training datasets, the
information is transferred to the second phase of the project. In this phase, the algorithm will take the
incoming labeled data and use machine learning to train a model used to make predictions on the test data.
With the model trained, the team can transition into the Evaluation phase where the model will be trained
and evaluated using a set of test data. If the evaluation is satisfactory, then the team can move on to the
final phase of prediction the recognized object. Using the neural network, the algorithm will then predict
what it thinks it sees in new unseen data. This allows the system to inform the user about any found objects
and their relative associated information.

 7

Figure 2: Python Machine Learning Process Diagram

3.3 Assessment of Proposed Methods

3.3.1 Hardware and Software
In terms of hardware, the TX1 and TK1 NVIDIA boards were suggested by the client. After considering both
boards, the team has decided to go with the TX1 board which can be purchased as a kit incorporating I/O,
HDMI, USB, WI-FI, and a camera interface. NVIDIA also offers CUDA, an application programming interface,
to deploy the neural network architecture onto the GPU. All requirements for meeting the goals outlined
for the project should be possible using these predefined interfaces. Other possible interfaces, outside the
scope of this project, would include the onboard GPS and the autopilot system Rockwell Collins has running
on the drone.

In terms of software, there are multiple viable options. MATLAB is a programming environment and
language all in one. Used by engineers and scientist for visualizing data to develop and running algorithms
in the areas of robotics, signal processing, and image processing. MATLAB presents itself as a viable option
because it has toolboxes for computer vision, machine learning, and neural networks. OpenCV is an open
source computer vision library that can be used with many of today's popular programming languages. The
functions in OpenCV are specifically written towards computer vision with focus on areas such as two-
dimensional and three-dimensional features, motion tracking, learning, and artificial neural networks.
Google’s TensorFlow is another open source library which focuses more on machine learning and neural
networks and is available for C++ or Python programming languages. Caffe is an OpenCV framework that
can be used for machine learning and neural networks.

The team has decided to go with Python as the programming language of choice for libraries because more
team members have used it than C++. For those team members who have not used either language, Python
is said to be the easier of the two to learn. OpenCV’s focus is computer vision thus it has more functions to
work with for this project. OpenCV is open source versus a hefty price tag for MATLAB. After consulting
different popular technologies and frameworks, it was decided that the Caffe deep learning framework
would be the best choice due to its expressive architecture, extensible code base, and speed optimizations.
Furthermore, TensorFlow is not supported by the NVIDIA Jetson TX1 embedded board whereas Caffe is
supported.

 8

3.3.2 Image Preprocessing
Images are the heart of this project and without images, there are no objects to detect. Because of this,
being able to read an image and work with it is an important first step. Image processing involves altering
the image to help acquire specific information quickly. For example, a green square could be found by
removing all other colors first and then looking for specific details, or key features, of a square. Other image
processing techniques can help remove noise such as discolored pixels that appear as speckles or dots in
an image.

Image preprocessing was done entirely in OpenCV. To begin this process, the team first learned how to
read an image into the program. This was a straightforward technique requiring one line of code. With
access to the image, work could begin by processing the image. The first processing technique used
involved converting from a colored image to a gray scaled image. At such an early stage in the project,
colors are not a big concern so it is easiest to eliminate them. This takes away the complexity of working
with the red, green, and blue color intensities out of the equation and leaves just the one color intensity.

Next, blurring techniques were considered to help remove noise and smooth out rough edges. In its
simplistic form, blurring works by looking at a pixel and the surrounding pixels to determine what color it
should be. The blurring methods explored included OpenCV’s blur, Gaussian blur, median blur, and bilateral
filter.

After blurring techniques, thresholding was the next image processing technique that was considered. This
technique involves setting a threshold for the color intensity. A limit is set based on the gray scale intensity
or shade of gray. Shades either above or below the limit can be removed while the remaining shades can
be converted to all one shade. The thresholding technique along with blurring can be used to remove noise
and provide a clean black and white image.

Once blurring and thresholding techniques were applied, an attempt was made at detecting features in an
image. There are a few techniques available for detecting features that were considered including Harris
Corner Detector, Shi-Thomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), Speeded-Up
Robust Features (SURF), FAST Algorithm for Corner Detection, Binary Robust Independent Elementary
Features (BRIEF), and Oriented FAST and Rotated BRIEF (ORB). After learning about each one, it was decided
to focus on ORB since it was developed by OpenCV combining the FAST and the BRIEF techniques and
matches performance of the SIFT and the SURF technique.

After detecting features in an object, the next logical step was trying to match features in one image to
those in another image. Two methods for matching features were used: a brute force matcher and a Fast
Library for Approximate Nearest Neighbors (FLANN). When comparing the same image both methods
worked equally well. Matching an image to the geometrically similar image but on a different scale and
matching an image to an image with multiple objects was also tried. The brute force method made more
matches between images; however, not all of them were correct. The FLANN method made fewer matches
compared to the brute force method, but the method also had fewer errors.

The team has learned a lot about image processing and is pleased with the blurring and thresholding results.
The team also has a lot more to learn about image processing and improvements need to be made with
matching objects, which could potentially be related to the chosen feature detection method. Being new
to this field, it is hard to know whether the results obtained are acceptable or not. Based on the team’s
knowledge and talking with the project’s advisors and client, the team should be able to improve upon

 9

these results. More exploration is needed into understanding what each method does and how the
parameters can be adjusted to obtain more accurate results.

3.3.3 Computer Vision
Regarding computer vision, basic object recognition use-case was explored using the OpenCV library.
Experiments began by using pre-existing code to explore how to perform detection of faces using OpenCV’s
FaceRecognizer module. Work began by feeding simple images containing faces to the program and
converting these images into grayscale. The program was then extended to include the capability to
distinguish between faces belonging to different people (by constructing a labeled training dataset). Upon
consolidation of this feature, a video stream was fed from the webcam to the facial recognition software.
A green square box was drawn around the recognized faces, as well as displaying a name on the command-
line, should a familiar face have been encountered. Figure 3 shows an example of someone being
recognized.

Figure 3: Facial recognition of David Schott

The code and documentation of the command-line interface for adding new faces (taking screenshots using
a webcam), training the recognizer, and launching it has been uploaded to the group’s GitLab repository.

3.3.4 Neural Networks
With the application revolving around neural networks and computer vision, focus for the project was split
between learning about neural network frameworks such as TensorFlow or Caffe, as well as learning how
computer vision works with the OpenCV framework. So far, the team has practiced using neural network
frameworks and OpenCV regarding handwriting analysis and facial recognition respectively. However, this
consisted of purely experimenting with pre-existing code. The next steps in the project involve detection
of images with cluttered background and being able to send OpenCV data to the neural network to perform
object detection quickly.

Figure 4: MNIST Sample Images

 10

The first tests with neural networks was with the Caffe framework starting with a classic neural network
vision problem which was classifying handwritten digits given by the MNIST dataset. See Figure 4 for an
example of the images used for handwritten digits. A typical naive approach for this specific problem that
was used to model the neural network looked like what is depicted in Figure 5.

Figure 5: Naive MNIST Image Classifier

The neural network above depicts an input layer of 784 neurons where each neuron corresponds to a pixel
in the images of handwritten digits (28×28 pixel images). Hidden layers essentially compress and
generalize the information from the input neurons. Finally, each neuron in the output layer outputs the
confidence that input image matches its class (numbers 0 through 9).

After training this network with the MNIST dataset, correct classification of the digits was identified 93% of
the time. While this may sound impressive, it is not very reliable when comparing the results to other
solutions that solve the same problem. This approach for processing images is naive for the following
reasons:

1. Only very low resolution images can be evaluated (28×28 pixels).
2. It can only correctly classify digits that are in the same relative position as the training images

(cannot classify digits in different locations).
3. There is trouble classifying rotated digits.
4. There is poor accuracy when compared to better solutions.
5. This type of model becomes infeasible when processing higher resolution images with millions of

pixels.

After finishing the work with traditional feed-forward neural networks and understanding the limitations
they suffer from, it was decided to explore Convolutional Neural Networks which specialize in image
classification. Some of the major problems with the previous design was that as the images became more
complex, the network size increases exponentially. Most importantly, when a feed forward neural network
processes an image, it has no sense of spatial locality, it sees the image in one dimension when it really is
a two-dimensional input. CNNs solve both major problems by introducing image convolution with kernels
and by subsampling images down further. Figure 6 shows an example of a simple CNN that also classifies
MNIST handwritten digits. One type of CNN that could be explored is called a LeNet CNN. The basic process
of this model can be seen in Figure 6.

 11

Figure 6: LeNet Convolutional Neural Network

The first step of LeNet is convoluting the input image with six different trained filters. These filters extract
six different feature maps that are used in subsequent layers of the network. The input images are of size
32×32 pixels while the six filters are of size 5×5. Each kernel will pass over the entire image while
convoluting subsections of the given image. Figure 7 shows an example of a kernel with its trained weights
over a specific section of the input image.

Figure 7: Kernel with Trained Weights

Convoluting these two matrices gives a result of 801 (a high positive result means the image section is like
a straight vertical line). Passing this kernel over an entire image extracts the image’s feature map for this
specific kernel which looks for vertical lines. The resulting feature map seen in Figure 8 is compressed into
a smaller feature map using max pooling. These steps are repeated until the processed data is passed into
a basic fully connected layer like the Caffe MNIST previously mentioned.

Figure 8: Max Pooling

For the fall semester, a Convolutional Neural Network (CNN) will be implemented because these networks
modeled after parts of the visual cortex and are specialized to recognize complex images without increased
processing time.

3.4 Validation

3.4.1 Image Preprocessing
A basic ‘X’ was picked to begin testing methods for image preprocessing. The testing process for feature
detection and matching will begin with an image of an ‘X’ containing no noise. The ‘X’ was made in Microsoft
Paint. An image with an ‘X’ and some background noise (such as colored dots) added around it will also be
used.

 12

These images will be used to test blurring and thresholding methods resulting in a black and white image
with smoother edges and less noise. Using these methods of blurring and thresholding, the noise should
be eliminated or appear lighter in color than what is present in the original images. These methods should
also smooth out any rough edges that are present in the original image.

Feature detection should be able to pull some features from the image and be consistent when duplicated
with the same image. Matching is used to verify two identical images containing the same features. The
same testing process will be followed to confirm success using the same image against an image that is
geometrically similar but scaled differently (e.g. ‘X’ vs. ‘x’). This testing will be extended to include trying to
match an image (e.g. ‘X’) with another image containing multiple objects (e.g. ‘A B C D …’).

Once it has been concluded that matching the same image in multiple scenarios is successful, the next set

of tests will begin. One of these tests will be taking similar images (i.e. ‘X’ vs ‘X’) and seeing how they

match across multiple scenarios. Another test will include matching similar images with other objects and
noise added. For phase II to be complete, a final test of matching multiples of the same object in an
image will be performed.

3.4.2 Computer Vision
This section covers testing the capability of the machine learning algorithms being used to predict an
object's classification. Initial test will start off basic to verify the algorithms can produce some positive
predictions. These initial test methods will compare the results obtained to results that have been
published. Comparing to published results entails finding a predefined dataset that has been run on similar
algorithms and comparing those results with those from the dataset being run on the algorithms. The
holdout method may also be used. This method involves dividing a dataset into a training set and a test set.
The model is trained, never seeing the test set until the model is ready to be evaluated. Then it can be
determined how well the model did by determining if the prediction matches the test object's label.

As the algorithms improve, more advanced testing techniques will need to be used to thoroughly test the
algorithms’ capabilities. Some more advanced methods include repeated holdout and cross validation. The
repeated holdout method is the holdout method repeated multiple times with the dataset redistributed
across the training and test sets each iteration. Using the repeated holdout method provides a better
estimate on how well the model performs on a random test set while providing an idea about the model's
stability. There are numerous methods for performing cross validation. The cross validation method being
considered is the k-fold cross validation method. The dataset is divided into k equally sized groups; these
groups are called folds. One fold is left to be used as the test group while the model is trained on the other
groups before testing. The process is repeated until each group has been tested and the results averaged
to estimate the algorithms capability.

Although most the testing will focus on object recognition and prediction, testing can be extended to
include the following:

1. Recognize activity: Using elementary machine learning approaches (i.e. training classifiers using
labeled datasets containing objects at motion vs. objects at rest), additional capabilities can be
added to the image processor such as identifying objects in motion. These can then be verified with
typical machine learning model assessment methods such as True Positive Rate or False Positive
Rate.

 13

2. Distance of the object from the camera: This is a tricky problem that needs to be approached
carefully. One would need to manually measure the actual distance and compare it to the
estimated distance supplied by the computer-vision algorithms applied to pictures of objects of a
certain (known) distance away.

3. Multiple Object Recognition: Upon successfully identifying different types of flying objects, one
way of evaluating performance of the models and identifying problematic regions is through the
generation of a confusion matrix. The confusion matrix will help in the understanding the accuracy
and misclassification rates of the algorithms being used.

3.4.3 Neural Networks
This section covers final testing with the model being deployed on a neural network. For the variety of tasks
that the application should be able to perform, there will be a series of test suites to be able to validate
whether models adhere to the client’s specifications. Along with the test mentioned in Section 3.4.2, the
following is a listing of a few validation tests to be used for the application:

• Provide the application with a series of images of aircraft/other objects with a cluttered
background and test whether the system can reliably detect the target image. A low error rate for
many images is the goal along with a high confidence level for each classified object in an image.

• Provide the application with a video of an object moving with a cluttered background behind it and
test whether the system can reliably detect the moving object.

• Automated cross-validation techniques with labelled images to obtain an averaged model
prediction accuracy.

For the above validation tests, the success of the tests will be based on how consistently accurate the
application can detect an object (either moving or stationary) through a large amount of trials (preferably
in an automated way).

Additional software that may be used for testing and demonstration purposes include a flight simulator
and a GUI. A flight simulator will allow a controlled stream of data to enter the system. A GUI could be used
to display system results such as identification of detected objects or prediction accuracy. Additional
hardware for this project would be in the form of a camera. A camera could be used to import either still
pictures or to stream video into the system. However, with the numerous photos available on the internet
and the possible use of a flight simulator, an actual camera may not need to be incorporated into the
project.

 14

4 Project Requirements and Specifications
4.1 Functional Requirements
The following list includes the functional requirements for the project:

• The image processor must be able to process a single picture, string of pictures, and/or
continuously moving video.

• The image processor must be able to detect stationary objects apart from the background.
• The image processor must be able to detect moving objects apart from the background.
• The image processor must be able to detect multiple objects of the same or different type in a

single image.
• The image processor must be able to report confidence levels of any identified objects.

4.2 Non-Functional Requirements
The following list includes the non-functional requirements for the project:

• Time performance: The object detection processing pipeline for a single image should take no
longer than 2 seconds.

• Scalability: The application must be able to run advanced mathematical calculations on an NVIDIA
TX1 board with hardware constraints in memory and processing speed.

• Extensibility: The data should be outputted in an elastic way such that future users could easily
integrate and use the data in other systems (i.e. using JSON-format).

• Object detection accuracy: The image processor should be able to identify a desired object 70% of
the time on images where the object in question is clearly discernible by a human eye.

• Reliability: The image processor should be able to run sustainably for 30 minutes without crashes
or other execution interruptions (i.e. due to overheating, memory leaks, or other software bugs).

4.3 Standards and Ethics
When working on this project, the team will be adhering to several standards. First, all code that will be
written will standardized and documented, making it easy to maintain, understand, and debug if necessary.
To ensure high software quality and team cohesion, software peer reviews will be incorporated to ensure
that all team members are familiar with each other’s code and purpose. Furthermore, since a lot of the
code base will initially be written using the Python programming language, PEP 8 recommended style guide
for Python will be followed. The Python Package Index (PyPI) will be used to pin down any dependencies
through a requirements.txt file. There are several IEEE standards which are applicable to the project. These
standards include floating point standardization, test methodology standardization, as well as code
standardization. It will be important to adhere to these standards for when the code is transferred to the
client’s system. The Code of Ethics and Code of Conduct standards of IEEE and ABET will be followed
throughout this project.

 15

5 Challenges
The immediately observable challenges faced in this project are knowledge and theory related. The
machine learning field is unfamiliar territory to most of the team. The vastness of this field and the open-
endedness of the client’s expectations results in the need to be careful before investing a lot of time in a
technique or method that may not be scalable. Expanding on this, there exists a need to be aware of
potential pitfalls since there is no “one-size-fits-all” approach to an image recognition problem. Gleaning
advice and information from the advisors and project stakeholders, who are much more knowledgeable on
machine learning and computer vision, will be paramount to a successful project.

NVIDIA TK1 and TX1 boards have been acquired for this project. These boards will not be incorporated
until later in the project. This may lead to challenges getting the boards to work, the models running on
them, and potential issues with any related equipment incorporated with the board, such as cameras. The
boards and related equipment will be shared with other teams. This could present a challenge in having
access to specific equipment as needed. To avoid this, the TX1 board was selected with the knowledge that
the other team would primarily be working with the TK1 board.

This project involves a client, two advisors and six team members. For many team members, this is their
first experience being on a large project and part of a bigger team. With so many people involved,
communication is going to be key to keep everyone on the same page. Any lack of communication or lack
of clarity could lead to problems that may affect progress. With the client having an open-ended vision and
only very general expectations set forth for the project, the team will need to make sure they are in contact
with the client to ensure the client’s satisfaction with the direction in which the project moves. Additionally,
team members have other classes and tasks that require their attention outside of this project; members
will need to be diligent in their work and avoid any lapses in accountability. Team members will also need
to be intentional in their communication with each other, stating where they are in the project and if they
need assistance, or there may not be enough forward progress made to accomplish all goals set forth for
the project.

The anticipated use of Convolutional Neural Networks (CNN) are much more complex than a traditional
neural network which may present further problems in the final design. Fortunately, there are several
detailed research papers and implementations of CNNs available to study. These papers should prove to
be useful as the project moves forward and more problems are encountered.

 16

6 Timeline
6.1 Overview
The timeline below in Figure 9 shows the goal of the project. The phases listed correspond to the phases
listed in Section 2: Deliverables. The first semester is heavily focused on education, determining the
hardware to use and selecting which software interfaces work well with the hardware to accomplish the
goals set forth for the project. The second semester is heavily focused on producing the deliverables
outlined within each phase of the project.

Figure 9: Proposed Timeline

6.2 First Semester
The proposed project breakdown for the first semester of senior design can be seen below in Figure 10.
Most this semester will be spent on education on the topic, on the chosen hardware, and on software that
will integrate with the hardware. Various phases may be lightly touched on through education but no
serious programming will be accomplished until the second semester.

Figure 10: First Semester Project Breakdown

6.3 Second Semester
The proposed project breakdown for the second semester of senior design can be seen below in Figure 11.
This semester is focused on using the education from first semester and applying it towards programming
the software and hardware to produce the desired deliverables. Assignments for phases will be broken up
and assigned to specific team members once the education phase from the first semester is complete. This
will allow the team to judge the strengths of each member more accurately while assigning tasks. This will
also allow the team to work on multiple phases at once and extend the amount of time needed on a phase,

 17

if necessary. Bonus features will be attempted only if there is adequate time at the end of the semester;
otherwise, these features will be included to move forward with the project in the future.

Figure 11: Second Semester Project Breakdown

 18

7 Conclusion
The primary objective of the project is to appreciate what it is like to work on a larger project with a
multidisciplinary engineering team. Considering that estimation work (at best) is required for a visual object
recognition task, this project is being approached from a research perspective. Thus, to optimally achieve
the goals set forth for the project, the team will be in close contact with the advisors and the client to
evaluate what steps will likely to lead to success. The goal is to complete phases I and II before the summer
ends and then use the remaining time in the fall semester to tackle the remaining phases.

The team began the project by expanding their knowledge base on computer vision, machine learning, and
neural networks. From there, the team explored what software was already available that would facilitate
incorporating computer vision and machine learning into the project. Using the background experience
from team members, previously coded examples, advisor expertise, and tutorials, the team has been able
to work with the different software to see how it performed to make a final decision on what software to
use to use with the hardware the client suggested. With this decision, out of the way, work began on the
design process to reach the goal of detecting airborne objects. This process consists of preprocessing
images, machine learning through training, evaluating and evolving the model, and finally prediction.

By utilizing OpenCV for image processing and the Caffe framework for machine learning, work can begin
on building a model that will be able to train, to test, and then to use to predict various objects. OpenCV
and Caffe have been used in numerous computer vision projects like the goal of the project, thus there is
access to a plethora of information. Likewise, NVIDIA provides interfaces for the chosen hardware, OpenCV,
and Caffe. Using these proven technologies will allow more time to concentrate on adapting the
technologies to the project goals instead of spending time figuring out how to get the various technologies
to communicate with each other.

 19

8 References
Listed below are references that have been used so far as part of the research and testing phases.

"Cascade Classifier Training." Cascade Classifier Training — OpenCV 2.4.13.2 Documentation. OpenCV Dev

Team, 16 Dec. 2016. Web. 31 Mar. 2017.
<http://docs.opencv.org/2.4.13.2/doc/user_guide/ug_traincascade.html>.

"Computer Technology Standards." IEEE Standards Association. IEEE, 2017. Web. 31 Mar. 2017.

<http://standards.ieee.org/cgi-
bin/lp_index?status=active&%3Bpg=40&%3Btype=standard&%3Bcoll=15>.

Deshpande, Adit. "A Beginner's Guide to Understanding Convolutional Neural Networks." A Beginner's

Guide to Understanding Convolutional Neural Networks – Adit Deshpande – CS Undergrad at UCLA
('19). N.p., 20 July 2016. Web. 31 Mar. 2017. <https://adeshpande3.github.io/A-Beginner's-Guide-To-
Understanding-Convolutional-Neural-Networks/>.

Geitgey, Adam. "Machine Learning Is Fun! Part 4: Modern Face Recognition with Deep Learning."

Medium. Medium Corporation, 24 July 2016. Web. 31 Mar. 2017.
<https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-
deep-learning-c3cffc121d78#.7732t9p7a>.

Mallick, Satya. "Home." Learn OpenCV. Big Vision LLC, 14 Nov. 2016. Web. 31 Mar. 2017.

<http://www.learnopencv.com/image-recognition-and-object-detection-part1/>.

Nielsen, Michael A. "Neural Networks and Deep Learning." Neural Networks and Deep Learning.

Determination Press, 01 Jan. 1970. Web. 31 Mar. 2017.
<http://neuralnetworksanddeeplearning.com/>.

Ng, Andrew. "Machine Learning." Machine Learning | The Open Academy. Open Academy, n.d. Web. 31

Mar. 2017. <http://theopenacademy.com/content/machine-learning>. Ng, Andrew. "Machine
Learning." Machine Learning | The Open Academy. Open Academy, n.d. Web. 31 Mar. 2017.
<http://theopenacademy.com/content/machine-learning>.

Qureshi, Shehrzad. "Computer Vision Acceleration Using GPUs." Computer Vision Acceleration Using

GPUs (n.d.): n. pag. AMD Developer. AMD, June 2011. Web. 31 Mar. 2017.
<http://developer.amd.com/wordpress/media/2013/06/2162_final.pdf>.

Shimodaira, Hiroshi. "Learning and Data Note." Multi-Layer Neural Networks (2015): n. pag. Web.

<https://491dec1709.slack.com/files/daschott/F46274YA1/learning.zip>.

Smith, Steven W. "Nueral Networks (and More!)." The Scientist and Engineer's Guide to Digital Signal

Processing. San Diego, CA: California Technical Publ., 1999. 451-80. Print.

	1 Introduction
	1.1 Project Statement
	1.2 Purpose
	1.3 Goals

	2 Deliverables
	3 Design
	3.1 Previous Work / Previous Literature
	3.2 Proposed System Block Diagram
	3.3 Assessment of Proposed Methods
	3.3.1 Hardware and Software
	3.3.2 Image Preprocessing
	3.3.3 Computer Vision
	3.3.4 Neural Networks

	3.4 Validation
	3.4.1 Image Preprocessing
	3.4.2 Computer Vision
	3.4.3 Neural Networks

	4 Project Requirements and Specifications
	4.1 Functional Requirements
	4.2 Non-Functional Requirements
	4.3 Standards and Ethics

	5 Challenges
	6 Timeline
	6.1 Overview
	6.2 First Semester
	6.3 Second Semester

	7 Conclusion
	8 References

